ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ МЕСТНОЙ АДМИНИСТРАЦИИ МУНИЦИПАЛЬНОЕ КАЗЁННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 21 с углубленным изучением отдельных предметов

360009, КБР, г. о.Нальчик, ул. Тимирязева, 7

Телефон: (8662) 91-16-19, 91-17-29

e-mail: school iac@mail.ru

ОГРН 1020700750333

ИНН 0711038298

КПП 072601001

Сайт: www.школа21нальчик.ru

Утверждаю Директор МКОУ «СОШ №21» ЗООЗ 3.М.Казакова «28» августа 2018 г. Согласовано
Зам. директора по УВР
И.А.Алехина
«27» августа 2018 г.

Рассмотрено
на заседании МО
Протокол № /
«25» августа 2018 г.
Руковолитель МО

Рабочая программа по алгебре и началам анализа класе: 10 A

Учитель: Батырова Людмила Владимировна

Нальчик 2018-2019 учебный год

Пояснительная записка.

Данная рабочая программа ориентирована на учащихся 10 классов естественно-научного профиля и реализуется на основе следующих документов:

- 1. Программы. Математика 5-6 классы. Алгебра 7-9 классы.
- 2. Программа. Алгебра и начала анализа 10-11 классы /авторы-составители И.И. Зубарева, А.Г. Мордкович. М. Мнемозина, 2008г. 64с.
- 3. Государственный стандарт образования по математике.

Программа соответствует учебному комплекту

- 1. «Алгебра и начала анализа. Базовый уровень. Часть 1. Учебник 10 класс»
- 2. «Алгебра и начала анализа. Базовый уровень. Часть 2. Задачник 10 класс» для общеобразовательных учреждений / А.Г. Мордкович и др. М. Мнемозина, 2015 г.

Преподавание ведется по варианту – 3 часа в неделю, всего 105 часов, на итоговое повторение отводится 9 часов.

Главной целью образования является развитие ребёнка как компетентной личности путём включения его в различные виды ценностной человеческой деятельности. Обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями.

Цели обучения алгебре и началам анализа:

- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

Требования ФГОС к результатам изучения курса «алгебра и начала анализа»:

Личностными результатами, формируемыми при изучении данного курса, являются:

- -сформированность мировоззрения, соответствующего современному уровню развития науки; критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- готовность и способность вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения;
- -навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в общеобразовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- -готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- -эстетическое отношение к миру, включая эстетику быта, научного и технического творчества;
- -осознанный выбор будущей профессии и возможность реализации собственных жизненных планов;

Метапредметные результаты изучения алгебры проявляются:

- -в умении самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;
- в умении самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- -в умении соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата;
- -в умении оценивать правильность выполнения учебной задачи, собственные возможности ее решения;
- -в готовности и способности к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- -в умении использовать средства ИКТ;
- -в умении ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;

Предметными результатами освоения данного курса являются:

- -сформированность представлений о математике как части мировой культуры и о месте математики в современной цивилизации, о способах описания на математическом языке явлений реального мира;
- сформированность представлений о математических понятиях как о важнейших математических моделях,
- -владение геометрическим языком; развитие умения использовать его для описания предметов окружающего мира;
- -владение методами доказательств и алгоритмов решения; умение их применять, проводить доказательные рассуждения в ходе решения задач;
- -владение стандартными приемами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств;
- -сформированность представлений об основных понятиях, идеях и методах математического анализа;
- сформированность представлений о процессах и явлениях, имеющих вероятностный характер, о статистических закономерностях в реальном мире, об основных понятиях элементарной теории вероятностей; сформированность умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;
- сформированность представлений о необходимости доказательств при обосновании математических утверждений и роли аксиоматики в проведении дедуктивных рассуждений;
- сформированность умений моделировать реальные ситуации, исследовать построенные модели;

Требования к уровню подготовки выпускников

В результате изучения математики на профильном уровне в старшей школе ученик должен

Знать/понимать

- значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;
- идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;
- значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;
- универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;

- различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
- вероятностных характер различных процессов и закономерностей окружающего мира.

Числовые и буквенные выражения

Уметь:

- выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
- применять понятия, связанные с делимостью целых чисел, при решении математических задач;
- находить корни многочленов с одной переменной, раскладывать многочлены на множители;
- проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

• практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, при необходимости используя справочные материалы и простейшие вычислительные устройства.

Функции и графики

Уметь

- определять значение функции по значению аргумента при различных способах задания функции;
- строить графики изученных функций, выполнять преобразования графиков;
- описывать по графику и по формуле поведение и свойства функций;
- решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов.

Начала математического анализа

Уметь

находить сумму бесконечно убывающей геометрической прогрессии;

Уравнения и неравенства

Уметь

- решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;
- доказывать несложные неравенства;
- решать текстовые задачи с помощью составления уравнений, и неравенств, интерпретируя результат с учетом ограничений условия задачи;
- изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.
- находить приближенные решения уравнений и их систем, используя графический метод;
- решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для построения и исследования простейших математических моделей.

Элементы комбинаторики, статистики и теории вероятностей

Уметь:

- решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул, треугольника Паскаля; вычислять коэффициенты бинома Ньютона по формуле и с использованием треугольника Паскаля;
- вычислять, в простейших случаях, вероятности событий на основе подсчета числа исходов.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

• анализа реальных числовых данных, представленных в виде диаграмм, графиков; для анализа информации статистического характера.

При изучении алгебры и начал анализа в старшей школе осуществляется переход от методики поурочного планирования к блочно-модульной системе организации учебного процесса. Тематическое планирование составлено с учетом применения при обучении алгебре и началам анализа блочно-модульной технологии. Каждый тематический блок состоит из нескольких модулей: ПМ - проблемный модуль, ИМ - информационный модуль, РМ - расширенный модуль, МС - модуль систематизации, МКЗ - модуль коррекции знаний.

Модуль	Содержание модуля		
Проблемный	Создание проблемной ситуации, приводящей к появлению		
	нового понятия.		
	Изучение нового материала единым блоком, разработка		
Информационный	алгоритмов решения задач и классификация их основных		
	типов.		
Расширенный	Углубление и расширение теоретического материала.		
Тасширенный	Решение более сложных, нестандартных задач		
Систематизации	Обобщение и систематизация материала блока		
Коррекции знаний	Ликвидация пробелов		
	Учёт знаний учащихся:		
Контроля	а) текущий контроль;		
Контроли	б) контроль выполнения домашних заданий;		
	в) итоговый контроль.		

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

№	Наименование разделов и тем	Количество	Кол
темы		часов	во
			контр
			работ
	Повторение	6	1
1.	Числовые функции	12	
2.	Тригонометрические функции	16	1
3.	Тригонометрические уравнения	18	1
4.	Преобразование тригонометрических выражений	14	1
5.	Производная	30	3
6.	Обобщающее повторение.	9	2
	Итого:	105 часов	

СОДЕРЖАНИЕ КУРСА

Повторение курса 9 класса (6ч.)

Решение уравнений Решение текстовых задач Функции и графики функций

Числовые последовательности

Числовые функции (12 ч)

Определение функции, способы ее задания, свойства функций. Обратная функция.

Основная цель:

- сформировать представление о целостности и непрерывности курса алгебры основной школы на материале о числовых функциях;
- -обобщить и систематизировать знания учащихся по числовым функциям курса алгебры основной школы;
- развивать логическое, математическое мышление и интуицию, творческие способности в области математики.

Тригонометрические функции (16 ч)

Числовая окружность. Длина дуги единичной окружности. Числовая окружность на координатной плоскости. Синус и коси нус. Тангенс и котангенс. Тригонометрические функции числового аргумента. Тригонометрические функции углового аргумента. Формулы приведения. Функция $y = \sin x$, ее свойства и график. Функция $y = \cos x$, ее свойства и график. Периодичность функций $y = \sin x$, $y = \cos x$. Построение графика функций y = mf(x) и y = f(x) по известному графику функции y = f(x). Функции $y = \tan x$ и $y = \cot x$, их свойства и графики.

Основная цель:

- сформировать представление о числовой окружности, о числовой окружности на координатной плоскости;
- сформировать умение находить значение синуса, косинуса, тангенса и котангенса на числовой окружности;

- создать условия для **овладения умением** применять тригонометрические функции числового аргумента, при преобразовании тригонометрических выражений;
- -создать условия для овладения навыками и умениями построения графиков функций $y = \sin x$, $y = \cos x$, $y = \tan x$, $y = \cot x$;
- развивать творческие способности в построении графиков функций $y = m \times f(x)$, $y = f(k \times x)$, зная y = f(x)

Изучение темы начинается с вводного повторения, в ходе которого напоминаются основные формулы тригонометрии, известные из курса алгебры, и выводятся некоторые новые формулы. От учащихся не требуется точного запоминания всех формул. Предполагается возможность использования различных справочных материалов: учебника, таблиц, справочников.

Тригонометрические уравнения (18 ч)

Первые представления о решении тригонометрических урав нений. Арккосинус. Решение уравнения $\cos t = a$. Арксинус. Решение уравнения $\sin t = a$. Арктангенс и арккотангенс. Решение уравнений $\operatorname{tg} x = a$, $\operatorname{ctg} x = a$.

Простейшие тригонометрические уравнения. Два метода решения тригонометрических уравнений: введение новой переменной и разложение на множители. Однородные тригонометрические уравнения.

Основная цель:

- **сформировать представление** о решении тригонометрических уравнений на числовой окружности, об арккосинусе, арксинусе, арксинусе, арктангенсе и арккотангенсе;
- создать условия для овладения умением решать тригонометрические уравнения методом введения новой переменной, разложения на множители;
- сформировать умение решать однородные тригонометрические уравнения;
- расширить и обобщить сведения о видах тригонометрических уравнений

Решение простейших тригонометрических уравнений основывается на изученных свойствах тригонометрических функций. При этом целесообразно широко использовать графические иллюстрации с помощью единичной окружности. Отдельного внимания заслуживают уравнения вида sinx = 1, cosx = 0 и т.п. Их решение нецелесообразно сводить к применению общих формул.

Отработка каких-либо специальных приемов решения более сложных тригонометрических уравнений не предусматривается. Достаточно рассмотреть отдельные примеры решения таких уравнений, подчеркивая общую идею решения: приведение уравнения к виду, содержащему лишь одну тригонометрическую функцию одного и того же аргумента, с последующей заменой.

Материал, касающийся тригонометрических неравенств и систем уравнений, не является обязательным.

Преобразование тригонометрических выражений (14 ч)

Синус и косинус суммы и разности аргументов. Формулы двойного аргумента. Формулы понижения степени. Преобразование сумм тригонометрических функций в произведение. Преобразование произведений тригонометрических функций в суммы.

Основная цель:

- **сформировать представление** о формулах синуса, косинуса, тангенса суммы и разности аргумента, формулы двойного аргумента, формулы половинного угла, формулы понижения степени;
- создать условия для **овладения умением** применять эти формулы, а также формулы преобразования суммы тригонометрических функций в произведение и формулы преобразования произведения тригонометрических функций в сумму;
- расширить и обобщить сведения о преобразованиях тригонометрических выражений с применением различных формул

Производная (30 ч)

Определение числовой последовательности и способы ее задания. Свойства числовых последовательностей.

Предел функции на бесконечности. Предел функции в точке. Приращение аргумента. Приращение функции.

Задачи, приводящие к понятию производной. Определение производной. Алгоритм отыскания производной. Формулы дифференцирования. Правила дифференцирования. Дифференцирование функции $\mathbf{y} = f(kx + m)$.

Уравнение касательной к графику функции. Алгоритм составления уравнения касательной к графику функции y = f(x).

Применение производной для исследования функций на монотонность и экстремумы. Построение графиков функций. Применение производной для отыскания наибольших и наименьших значений величин.

Основная цель:

- формировать умения применять правила вычисления производных и вывода формул производных элементарных функций;
- формировать представление о понятии предела числовой последовательности и функции;
- создать условия для овладения умением исследования функции с помощью производной, составлять уравнения касательной к графику функции При введении понятия производной и изучении ее свойств следует опираться на наглядно-интуитивные представления учащихся о приближении значений функции к некоторому числу, о приближении участка кривой к прямой линии и т. п.

Формирование понятия предела функции, а также умение воспроизводить доказательства каких-либо теорем в данном разделе не предусматриваются. В качестве примера вывода правил нахождения производных в классе рассматривается только теорема о производной суммы, все остальные теоремы раздела принимаются без доказательства. Важно отработать достаточно свободное умение применять эти теоремы в несложных случаях.

В ходе решения задач на применение формулы производной сложной функции можно ограничиться случаем f(kx + b): именно этот случай необходим далее.

Опора на геометрический и механический смысл производной делает интуитивно ясными критерии возрастания и убывания функций, признаки максимума и минимума.

Основное внимание должно быть уделено разнообразным задачам, связанным с использованием производной для исследования функций. Остальной материал (применение производной к приближенным вычислениям, производная в физике и технике) дается в ознакомительном плане. Остальной материал (применение производной к приближенным вычислениям, производная в физике и технике) дается в ознакомительном порядке.

Обобщающее повторение. (9ч)

Основная цель:

- обобщить и систематизировать курс математики за 10 класс;
- формировать представления о различных типах тестовых заданий, которые включаются в ЕГЭ по математике;
- развивать творческие способности при применении знаний и умений в решении вариантов ЕГЭ по математике.
 - строить графики, описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
 - решать тригонометрические уравнения, используя свойства функций и их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

• описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

Учебно-тематическое планирование по математике в 10 классе

Модуль	Наименование разделов и тем	Кол-во часов	Дата проведения		№ урока
			План	Факт	
	Блок № 1. Повторение курса 9 класса	6	03.09-16.09		
мс	Решение уравнений и неравенств.	1	03.09		1
мс	Решение систем уравнений и неравенств.	2			2-3
мс	Разложение на множители. Сокращение дробей	1	07.09		4
мс	Числовые последовательности	1	10.09		5
МК	Вводная контрольная работа	1			6
	Блок № 2. Числовые функции	12	17.09-01.10		
ПМ	1.Определение числовой функции. Способы её задания	4	14.09		7-10
ИМ	(§1).		17.09		
мс	Определение числовой функции				
	Способы задания функции).				
	Определение и способы задания функции.				
ПМ	2.Свойства функции (§2).	4	21.09		11-14
ИМ	Свойства функции.		24.09		
мс	Определение свойств функции по графику.				
ПМ	3.Обратная функция (§3).	4	28.09		15-18
ИМ	Обратная функция.		01.10		
мс	Построение графиков обратных функций.				
	Решение задач по теме: Обратная функция.				
	Блок № 3. Тригонометрические функции	16	05.10-05.11		
ПМ	1. Числовая окружность (§4).	1	05.10		19
ИМ	Числовая окружность.				
ПМ	2. Числовая окружность на координатной плоскости (§5).	1	_		20
ИМ	Числовая окружность на координатной плоскости.				
мс	Решение задач по теме «Числовая окружность»				
ПМ	3. Синус и косинус. Тангенс и котангенс (§6).	2	08.10		21-22
ИМ	Синус и косинус.				
мс	Тангенс и котангенс.				

	Решение задач по теме «Синус, косинус, тангенс.			
ПМ	4.Тригонометрические функции числового аргумента (§7).	1	12.10	23
МКЗ	Тригонометрические функции числового аргумента.			
мс	Решение задач по теме «Тригонометрические функции			
	числового аргумента».			
ПМ	5. Тригонометрические функции углового аргумента (§8)	1		24
	Тригонометрические функции углового аргумента.			
мс	Решение задач по теме «Тригонометрические функции			
	углового аргумента»			
ИМ	6. Формулы приведения (§9)	2	15.10	25-26
мс	Формулы приведения.			
	Применение формул приведения.			
МК	7. Контрольная работа № 1 по теме «Основные понятия о	1	19.10	27
	тригонометрических функциях. Формулы приведения».			
ИМ	8. Функция y=sin x, её свойства и график (§10).	1		28
мс	Функция y=sin x, ее свойства и график.			
	Решение задач по теме «Функция			
	y=sin x».			
ИМ	9. Функция y=cos x, её свойства и график (§11).	1	22.10	29
мс	Функция y=cos x, ее свойства и график.			
	Решение задач по теме «Функция			
	y=cos x».			
ИМ	10. Периодичность функции y=sin x, y=cos x (§12)	1		30
Им	11. Преобразования графиков тригонометрических функций	2	26.10	31-32
мс	(§13)			
ИМ	12. Функции y=tg x, y=ctg x, их свойства и графики	1	05.11	33
мс				
МК	13. Контрольная работа № 2 по теме «Тригонометрические	1		34
	функции, их свойства и графики»			
	Блок № 4. Тригонометрические уравнения	18	09.11-07.12	
ИМ	1. Арккосинус и решение уравнения cost=a (§15).	2	09.11	35-36
ис				
ИМ	2. Арксинус и решение уравнения sint=a (§16).	2	12.11	37-38
мс				
ИМ	3. Арктангенс и арккотангенс. Решение уравнений tgx=a, ctgx=a (§17).	2	16.11	39-40
ИМ	4. Тригонометрические уравнения (§18).			
	1 1 1 (3).		1	

ИМ	Простейшие тригонометрические уравнения.	2	19.11	41-42
ИМ	Два основных метода решения тригонометрических	4	23.11	43-46
	уравнений.		26.11	
	Однородные тригонометрические уравнения.	2	30.11	47-48
	Решение тригонометрических уравнений.	3	03.12	49-51
МК	5. Контрольная работа № 3 по теме «Тригонометрические	1	07.12	52
	уравнения»			
	Блок № 5. Преобразование тригонометрических	14	10.12-	
	выражений		14.01.19	
ПМ	1. Синус и косинус суммы и разности аргументов (§19).	4	10.12	53-56
ИМ	Синус и косинус суммы аргументов		14.12	
мс	Синус и косинус разности аргументов			
ПМ	2. Тангенс суммы и разности аргументов (§20)	2	17.12	57-58
мс				
ПМ	3. Формулы двойного аргумента (§21)	2	21.12	59-60
мс	Формулы двойного угла.			
	Применение формул двойного угла.			
ПМ	4. Преобразование сумм тригонометрических функций в	2	24.12	61-62
мс	произведение (§22).			
	Преобразование сумм тригонометрических функций в			
	произведение.			
	Применение формул сумм тригонометрических функций.			
ИМ	5. Преобразование произведений тригонометрических	2	28.12	63-64
мс	функций в сумму (§23)			
МК	6. Контрольная работа № 4 «Преобразование	2	14.01.19	65-66
	тригонометрических выражений»			
	Блок № 6. Производная	30	18.01-11.03	
ИМ	1. Числовые последовательности и их свойства. Предел	2	18.01	67-68
МКЗ	последовательности (§24).			
	Предел последовательности.			
	Вычисление пределов.			
ИМ	2. Сумма бесконечной геометрической прогрессии (§25).	2	21.01	69-70
мс				
ПМ	3. Предел функции (§26).	2	25.01	71-72
ИМ	Предел функции на бесконечности и в точке.			
мс	Приращение аргумента и приращение функции.			
	Решение задач по теме «предел функции»			

ИМ	4. Определение производной (§27).	4	28.01	73-76
мс	Определение производной.		01.02	
	Геометрический и физический смысл производной.			
	Алгоритм отыскания производной.			
ИМ	5. Вычисление производных (§28).	3	04.02	77-79
мс	Формулы дифференцирования.		08.02	
МКЗ	Правила дифференцирования.		11.02	
	Вычисление производных.			
ПМ	6. Уравнение касательной к графику функции (§29).	2		80-81
мс				
МК	7. Контрольная работа № 5 «Производная»	1		82
ПМ	8. Применение производной для исследования функций	4	15.02	83-86
ИМ	(§30).		18.02	
мс	Исследование функций на монотонность.			
	Нахождение точек экстремума.			
	Применение производной для исследования функций.			
ПМ	9. Построение графиков функций (§31).	2	22.02	87-88
ИМ	Алгоритм исследования функции для построения графика.			
мс	Построение графиков функций.			
ПМ	10. Применение производной для отыскания наибольшего и	2	25.02	89-90
ИМ	наименьшего значений непрерывной функции на			
мс	промежутке (§32).			
	Алгоритм нахождения наибольшего и наименьшего			
	значений функции.			
	Нахождение наибольшего и наименьшего значений			
	функции.			
ПМ	11. Задачи на отыскание наибольших и наименьших	4	01.03	91-94
ИМ	значений величин (§33).		04.03	
MC	Задачи на отыскание наибольших и наименьших значений			
	величин.			
	Решение задач на отыскание наибольших и наименьших			
	значений величин.			
MK	12. Контрольная работа № 6,7 «Применение производной»	2	11.03	95-96
	Блок № 8. Обобщающее повторение.	9	15.03-30.05	
МС	2. Алгебра			07.100
МКЗ	Тригонометрические функции.	7		97-103

МК	Преобразование тригонометрических выражений.		
	Тригонометрические уравнения.		
	Производная.		
	Применение производной.		
	Подготовка к итоговому тестированию.		
МК	3.Итоговое тестирование	2	104-105
	Всего часов	105	

Рабочую программу составила	Л.В.Батырова,	учитель математики
		,